An Extended Frank-Wolfe Method with "In-Face" Directions, and Its Application to Low-Rank Matrix Completion
نویسندگان
چکیده
Motivated principally by the low-rank matrix completion problem, we present an extension of the Frank-Wolfe Method that is designed to induce near-optimal solutions on low-dimensional faces of the feasible region. This is accomplished by a new approach to generating “in-face” directions at each iteration, as well as through new choice rules for selecting between in-face and “regular” Frank-Wolfe steps. Our framework for generating in-face directions generalizes the notion of away-steps introduced by Wolfe. In particular, the in-face directions always keep the next iterate within the minimal face containing the current iterate. We present computational guarantees for the new method that trade off efficiency in computing near-optimal solutions with upper bounds on the dimension of minimal faces of iterates. We apply the new method to the matrix completion problem, where low-dimensional faces correspond to low-rank matrices. We present computational results that demonstrate the effectiveness of our methodological approach at producing nearly-optimal solutions of very low rank. On both artificial and real datasets, we demonstrate significant speed-ups in computing very low-rank nearly-optimal solutions as compared to the Frank-Wolfe Method (as well as several of its significant variants).
منابع مشابه
An Extended Frank--Wolfe Method with “In-Face” Directions, and Its Application to Low-Rank Matrix Completion | SIAM Journal on Optimization | Vol. 27, No. 1 | Society for Industrial and Applied Mathematics
Motivated principally by the low-rank matrix completion problem, we present an extension of the Frank–Wolfe method that is designed to induce near-optimal solutions on lowdimensional faces of the feasible region. This is accomplished by a new approach to generating “in-face” directions at each iteration, as well as through new choice rules for selecting between inface and “regular” Frank–Wolfe ...
متن کاملEfficient Sparse Low-Rank Tensor Completion Using the Frank-Wolfe Algorithm
Most tensor problems are NP-hard, and low-rank tensor completion is much more difficult than low-rank matrix completion. In this paper, we propose a time and spaceefficient low-rank tensor completion algorithm by using the scaled latent nuclear norm for regularization and the FrankWolfe (FW) algorithm for optimization. We show that all the steps can be performed efficiently. In particular, FW’s...
متن کاملGraph Matrix Completion in Presence of Outliers
Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملFitting Spectral Decay with the \(k\)-Support Norm
The spectral k-support norm enjoys good estimation properties in low rank matrix learning problems, empirically outperforming the trace norm. Its unit ball is the convex hull of rank k matrices with unit Frobenius norm. In this paper we generalize the norm to the spectral (k, p)support norm, whose additional parameter p can be used to tailor the norm to the decay of the spectrum of the underlyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 27 شماره
صفحات -
تاریخ انتشار 2017